Abstract

The Compact High Resolution Imaging Spectrometer (CHRIS) mounted onboard the Project for Onboard Autonomy (PROBA) spacecraft is capable of sampling reflected radiation at five viewing angles over the visible and near-infrared regions of the solar spectrum with high spatial resolution. We combined the spectral domain with the angular domain of CHRIS data in order to map the surface heterogeneity of an Alpine coniferous forest during winter. In the spectral domain, linear spectral unmixing of the nadir image resulted in a canopy cover map. In the angular domain, pixelwise inversion of the Rahman-Pinty-Verstraete (RPV) model at a single wavelength at the red edge (722 nm) yielded a map of the Minnaert-k parameter that provided information on surface heterogeneity at a subpixel scale. However, the interpretation of the Minnaert-k parameter is not always straightforward because fully vegetated targets typically produce the same type of reflectance anisotropy as non-vegetated targets. Merging both maps resulted in a forest cover heterogeneity map, which contains more detailed information on canopy heterogeneity at the CHRIS subpixel scale than is possible to realize from a single-source optical data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.