Abstract

Improving the quality of atmospheric precipitation measurements is crucial in the view of minimizing the uncertainty in weather forecasting, climate change impact assessment, water resource assessment and management, and drought and flood prediction. Remote sensing technology has considerably improved the spatio-temporal assessment of precipitation. Despite the advancement in the remote sensing technology, there is a need to investigate the robust approach towards integrating ground-based-measured and satellite-product precipitation to better understand the hydrologic process of any basin. Several data-merging methods have been proposed; however, the application of merged precipitation products for hydrological simulation has rarely been investigated. Thus, in this review, technical characteristics including basic assumptions, along with their procedures, are discussed. Moreover, the limitations of eight commonly used merging approaches, (1) Multiple Linear Regression, (2) Residual Inverse Distance Weighting, (3) Linearized Weighting, (4) Inverse Root-Mean-Square Error Weighting, (5) Optimal Interpolation, (6) Random-Forest-Based Merging Procedure, (7) Bayesian Model Averaging, and (8) the Kriging Method, and their advances with respect to hydrological simulation are discussed. Finally, future research directions towards improving data merging approaches are recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.