Abstract

AbstractWe study a random graph model which is a superposition of bond percolation on Zd with parameter p, and a classical random graph G(n,c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so‐called “rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe the phase diagram on the set of parameters c ≥ 0 and 0 ≤ p < pc, where pc = pc(d) is the critical probability for the bond percolation on Zd. The phase transition is of second order as in the classical random graph. We find the scaled size of the largest connected component in the supercritical regime. We also provide a sharp upper bound for the largest connected component in the subcritical regime. The latter is a new result for inhomogeneous random graphs with unbounded kernels. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.