Abstract
The formal hydroamination/hydroamidation utilizing metal hydride is an appealing synthetic tool for the construction of valuable nitrogen-containing compounds from unsaturated hydrocarbons. While significant advances have been made for the functionalizations of alkenes in this realm, the direct hydroamidation of alkynes remains rather limited due to the high feasibility of the key metal-alkenyl intermediate to choose other reaction pathways. Herein, we report a NiH-catalyzed strategy for the hydroamidation of alkynes with dioxazolones, which allows convenient access to synthetically useful secondary enamides in (E)-anti-Markovnikov or Markovnikov selectivity. The reaction is viable for both terminal and internal alkynes and is also tolerant with a range of subtle functional groups. With H2O found as an essential component for high catalyst turnovers, the involvement of inner-sphere nitrenoid transfer is proposed that outcompetes an undesired semireduction process, thus representing the first example to show the competence of Ni catalysis for metal-nitrenoid formation from dioxazolones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.