Abstract

Finite Element Analysis (FEA) is a useful method for understanding form and function. However, modelling of fossil taxa invariably involves assumptions as a result of preservation-induced loss of information in the fossil record. To test the validity of predictions from FEA, given such assumptions, these results could be compared to independent lines of evidence for cranial mechanics. In the present study a new concept of using bone microstructure to predict stress distribution in the skull during feeding is put forward and a correlation between bone microstructure and results of computational biomechanics (FEA) is carried out. The bony framework is a product of biological optimisation; bone structure is created to meet local mechanical conditions. To test how well results from FEA correlate to cranial mechanics predicted from bone structure, the well-known temnospondyl Metoposaurus krasiejowensis was used as a model. A crucial issue to Temnospondyli is their feeding mode: did they suction feed or employ direct biting, or both? Metoposaurids have previously been characterised either as active hunters or passive bottom dwellers. In order to test the correlation between results from FEA and bone microstructure, two skulls of Metoposaurus were used, one modelled under FE analyses, while for the second one 17 dermal bone microstructure were analysed. Thus, for the first time, results predicting cranial mechanical behaviour using both methods are merged to understand the feeding strategy of Metoposaurus. Metoposaurus appears to have been an aquatic animal that exhibited a generalist feeding behaviour. This taxon may have used two foraging techniques in hunting; mainly bilateral biting and, to a lesser extent, lateral strikes. However, bone microstructure suggests that lateral biting was more frequent than suggested by Finite Element Analysis (FEA). One of the potential factors that determined its mode of life may have been water levels. During optimum water conditions, metoposaurids may have been more active ambush predators that were capable of lateral strikes of the head. The dry season required a less active mode of life when bilateral biting is particularly efficient. This, combined with their characteristically anteriorly positioned orbits, was optimal for ambush strategy. This ability to use alternative modes of food acquisition, independent of environmental conditions, might hold the key in explaining the very common occurrence of metoposaurids during the Late Triassic.

Highlights

  • Temnospondyli is one of the most diverse groups of early tetrapods, which flourished worldwide during the Carboniferous, Permian and Triassic periods and survived the Triassic-Jurassic extinction as relics in eastern Asia and Australia until the Early Cretaceous (Holmes & Carroll, 1977; Milner, 1990; Warren, Rich & Vickers-Rich, 1997; Schoch, 2013)

  • Cranial biomechanics based on finite element analysis

  • Values of equivalent Von Mises stresses and their distribution were recorded in order to compare their behaviour under the effect of loads and constraints in the bilateral, Figure 3 Sectioning planes of dermal bones of skull of Metoposaurus krasiejowensis (UOPB 01029) in dorsal (A) and palatal (B) views

Read more

Summary

Introduction

Temnospondyli is one of the most diverse groups of early tetrapods, which flourished worldwide during the Carboniferous, Permian and Triassic periods and survived the Triassic-Jurassic extinction as relics in eastern Asia and Australia until the Early Cretaceous (Holmes & Carroll, 1977; Milner, 1990; Warren, Rich & Vickers-Rich, 1997; Schoch, 2013). The most characteristic and best-known part of the temnospondyl skeleton is the skull. This is a flat structure with few fenestrae on the skull roof (nares, orbits and, in some capitosaurs, the closed otic notch); the palatal side has more extensive openings: large subtemporal windows, interpterygoid vacuities and choanae. Despite extensive studies and numerous fossil records, lots of issues of temnospondyl biology and mode of life still remain unclear. Temnospondyls were carnivorous, but whether they mainly used suction feeding and/or direct biting is still unclear (Milner & Sequeira, 1998; Warren, 2000; Steyer et al, 2006; Witzmann, 2006; Damiani et al, 2009; Maganuco et al, 2009; Fortuny et al, 2011)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.