Abstract

We study the secular dynamics of compact binaries (consisting of white dwarfs, neutron stars or black holes) with tertiary companions in hierarchical triple systems. As the inner binary (with initially negligible eccentricity) undergoes orbital decay due to gravitational radiation, its eccentricity can be excited by gravitational forcing from the tertiary. This excitation occurs when the triple system passes through an ``apsidal precession resonance,'' when the precession rate of the inner binary, driven by the gravitational perturbation of the external companion and general relativity, matches the precession rate of the outer binary. The eccentricity excitation requires the outer companion to be on an eccentric orbit, with the mutual inclination between the inner and outer orbits less than $\ensuremath{\sim}40\ifmmode^\circ\else\textdegree\fi{}$. Gravitational wave (GW) signals from the inner binary can be significantly modified as the system evolves through the apsidal precession resonance. For some system parameters (e.g., a white dwarf binary with a brown dwarf tertiary), the resonance can happen when the binary emits GWs in the ${10}^{\ensuremath{-}4}\ensuremath{-}{10}^{\ensuremath{-}1}\text{ }\text{ }\mathrm{Hz}$ range (the sensitivity band of LISA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.