Abstract

We present results from {\it Chandra} observations of the galaxy pair NGC 7619 and NGC 7626, the two dominant members of the Pegasus group. The X-ray images show a brightness edge associated with each galaxy, which we identify as merger cold fronts. The edges are sharp, and the axes of symmetry of the edges are roughly anti-parallel, suggesting that these galaxies are falling towards one another in the plane of the sky. The detection of merger cold fronts implies a merging subgroup scenario, since the alternative is that the galaxies are falling into a pre-existing $\sim1$ keV halo without a dominant galaxy of its own, and such objects are not observed. We estimate the 3D velocities from the cold fronts and show that the velocity vectors are indeed most likely close to the plane of the sky, with a relative velocity of $\sim1190\kms$. The relative velocity is consistent with what is expected from the infall of two roughly equal mass subgroups whose total viral mass equals that of the Pegasus group. We conclude that the Pegasus cluster is currently forming from a major merger of two subgroups, dominated by NGC 7619 and NGC 7626. NGC 7626 contains a strong radio source, a core with two symmetric jets and radio lobes. Although we find no associated structure in the X-ray surface brightness map, the temperature map reveals a clump of cool gas just outside the southern lobe, presumably entrained by the lobe, and an extension of cooler gas into the lobe itself. The jet axis is parallel with the projected direction of motion of NGC 7626 (inferred from the symmetry axis of the merger cold front), and the southern leading jet is foreshortened as compared to the northern trailing one, possibly due to the additional ram pressure the forward jet encounters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call