Abstract

The concept of symmetry-protected bound states in the continuum (BICs) offers a simple approach to engineer metasurfaces with high-quality (Q) factors. However, traditional designs driven by symmetry-protected BICs require an extremely small perturbation parameter to obtain very large Q factors, complicating fabrication and limiting practical applications. Here, we demonstrate a BIC-driven structure composed of two coupled all-dielectric metasurfaces that enables ultrahigh-Q resonances even at large perturbations. The underlying mechanism enabling this is to merge the symmetry-protected BIC and Fabry-Pérot BIC in the parameter space by tuning the distance between the two metasurfaces, thereby altering the intrinsic radiation behavior of the isolated symmetry-protected BIC. It is found that this simple strategy results in Q factors that are three orders of magnitude higher than those with isolated-BIC configurations. Our approach provides a promising route for designing high-Q BIC nanostructures promising in exciting device applications as sensors and filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.