Abstract

We numerically study the interaction dynamics of two bright solitons with zero initial velocities in the one-dimensional dipolar Bose–Einstein condensates. Under different dipolar strengths, the two bright solitons can merge into a breathing wave, and then split or propagate constantly after several oscillating periods. We quantitatively study the breathing frequency of wave after merging and the asymmetry property of solitons after splitting,and analyze their formation mechanism by the system’s energy evolution. Also, the change of initial phase difference brings distinct effects on the soliton interaction. Our results provide insight into the new dynamical phenomena in dipolar systems and enrich the understanding for interaction between dipolar solitons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.