Abstract

Hydrogen is an ideal synthetic fuel because it is lightweight, abundant and its oxidation product (water) is environmentally benign. However, its utilization is impeded by the lack of an efficient storage device. A new building block approach is proposed for an exhaustive search of optimal hydrogen uptakes in a series of low density boron nitride (BN) nanoarchitectures via extensive 3868 ab initio-based multiscale simulations. By probing various geometries, temperatures, pressures, and doping ratios, these results demonstrate a maximum uptake of 8.65 wt% at 300 K, the highest hydrogen uptake on sorbents at room temperature without doping. Li+ doping of the nanoarchitectures offers a set of optimal combinations of gravimetric and volumetric uptakes, surpassing the US Department of Energy targets. These findings suggest that the merger of energetic affinity and optimal geometry in BN building blocks overcomes the intrinsic limitations of sorbent materials, putting hybrid BN nanoarchitectures on equal footing with hydrides while demonstrating a superior capacity-kinetics-thermodynamics relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.