Abstract

Inertia-induced changes in transport properties of an incompressible viscous time-periodic flow are studied in terms of the topological properties of volume-preserving maps. In the noninertial limit, the flow admits one constant of motion and thus relates to a so-called one-action map. However, the invariant surfaces corresponding to the constant of motion are topologically equivalent to spheres rather than the common case of tori. This has fundamental ramifications for the effect of inertia and leads to a new kind of response scenario: resonance-induced merger of coherent structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.