Abstract

We perform a simulation for merger of a black hole (BH)-neutron star (NS) binary in full general relativity preparing a quasicircular state as initial condition. The BH is modeled by a moving puncture with no spin and the NS by the $\Gamma$-law equation of state with $\Gamma=2$. Corotating velocity field is assumed for the NS. The mass of the BH and the rest-mass of the NS are chosen to be $\approx 3.2 M_{\odot}$ and $\approx 1.4 M_{\odot}$ with relatively large radius of the NS $\approx 14$ km. The NS is tidally disrupted near the innermost stable orbit but $\sim 80%$ of the material is swallowed into the BH with small disk mass $\sim 0.3M_{\odot}$ even for such small BH mass $\sim 3M_{\odot}$. The result indicates that the system of a BH and a massive disk of $\sim M_{\odot}$ is not formed from nonspinning BH-NS binaries, although a disk of mass $\sim 0.1M_{\odot}$ is a possible outcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call