Abstract

BackgroundHuman diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels. Recent advances in genomic technologies have enabled an outpour of omics datasets that capture these changes. However, separate analyses of these various data only provide fragmented understanding and do not capture the holistic view of disease mechanisms. To meet the urgent needs for tools that effectively integrate multiple types of omics data to derive biological insights, we have developed Mergeomics, a computational pipeline that integrates multidimensional disease association data with functional genomics and molecular networks to retrieve biological pathways, gene networks, and central regulators critical for disease development.ResultsTo make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server (http://mergeomics.research.idre.ucla.edu/). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. Additionally, it provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use.ConclusionsOur Mergeomics web server offers researchers flexible and user-friendly tools to facilitate integration of multidimensional data into holistic views of disease mechanisms in the form of tissue-specific key regulators, biological pathways, and gene networks.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3057-8) contains supplementary material, which is available to authorized users.

Highlights

  • Human diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels

  • We have developed an R package, Mergeomics (Shu et al, companion manuscript), which has the capacity to integrate summary-level disease association data, functional genomics (such as expression quantitative trait loci and ENCylopedia of DNA Elements (ENCODE) annotations), biological pathways, and gene networks to identify disease-associated gene subnetworks and key regulatory genes

  • We find that the association of markers (e.g., SNPs, genes, methylation sites) to a phenotype from various data modalities is a converging point that allows us to apply our strategy across such data types as genome-wide association studies (GWAS), microarray, RNA sequencing, DNA methylation, etc

Read more

Summary

Results

To make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server (http://mergeomics.research.idre.ucla.edu/). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. It provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use

Conclusions
Background
Results and discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.