Abstract

Facial expression based emotion recognition is one of the popular research domains in the computer vision field. Many machine vision-based feature extraction methods are available to increase the accuracy of the Facial Expression Recognition (FER). In feature extraction, neighboring pixel values are manipulated in different ways to encode the texture information of muscle movements. However, defining the robust feature descriptor is still a challenging task to handle the external factors. This paper introduces the Merged Local Neighborhood Difference Pattern (MLNDP) to encode and merge the two-level of representation. At the first level, each pixel is encoded with respect to center pixel, and at the second level, encoding is carried out based on the relationship with the closest neighboring pixel. Finally, two levels of encodings are logically merged to retain only the texture that is positively encoded from the two levels. Further, the feature dimension is reduced using chi-square statistical test, and the final classification is carried out using multiclass SVM on two datasets namely, CK+ and MMI. The proposed descriptor compared against other local descriptors such as LDP, LTP, LDN, and LGP. Experimental results show that our proposed feature descriptor is outperformed other descriptors with 97.86% on CK+ dataset and 95.29% on MMI dataset. The classifier comparison confirms the results that the combination of MLNDP with multiclass SVM performs better than other combinations in terms of local descriptor and classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.