Abstract

An approach to the speciation analysis of mercury in sea-water samples at sub-ppt levels by means of the hyphenation of solid phase microextraction to gas chromatography–inductively coupled plasma mass spectrometry was developed. Blank values turned out to be the limiting factor for lower detection limits of inorganic mercury. Thus, all the reagents were thoroughly cleaned using laboratory made microcolumns packed with 8-hydroxyquinoline on TSK gel. Sodium tetrapropylborate (NaBPr 4) synthesized for the purpose of derivatization of the mercury species resulted in better analytical performances of the method, probably due to lower mercury contamination, than commercial sodium tetraethylborate (NaBEt 4). Detection limits down to a few picogram per liter for both mercury and methylmercury were obtained using NaBPr 4. The high salt content of sea-water samples was responsible for strong matrix effects, which were overcome by using standards additions to the samples. The validation of the methodology was carried out by direct comparison of the results for inorganic mercury with those obtained using a flow injection system followed by preconcentration/trapping of the species and its detection by atomic absorption spectrometry. The proposed method was applied to the determination of mercury and methylmercury in coastal sea-water samples from Gijón (Asturias, Spain) and results obtained are discussed in the light of the butyltin levels previously determined in the same area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.