Abstract

AbstractThe structure, X‐line location, and magnetohydrodynamic (MHD) stress balance of Mercury's magnetotail were examined between −2.6 < XMSM < −1.4 RM using MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) measurements from 319 central plasma sheet (CPS) crossings. The mean plasma β in the CPS calculated from MESSENGER data is ~ 6. The CPS magnetic field was southward (i.e., tailward of X‐line) ~ 2–18% of the time. Extrapolation of downtail variations in BZ indicates an average X‐line location at −3 RM. Modeling of magnetic field measurements produced a cross‐tail current sheet (CS) thickness, current density, and inner CS edge location of 0.39 RM, 92 nA/m2 and −1.22 RM, respectively. Application of MHD stress balance suggests that heavy planetary ions may be important in maintaining stress balance within Mercury's CPS. Qualitative similarities between Mercury's and Earth's magnetotail are remarkable given the differences in upstream conditions, internal plasma composition, finite gyro‐radius scaling, and Mercury's lack of ionosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.