Abstract

This article aims to explore the use of machine learning (ML) methods for mapping the distribution of mercury (Hg) content in topsoil, using the city of Ufa (Russia) and adjacent areas as an example. For this purpose, a soil dataset of 250 points sampled from a 0–20 cm depth on different land uses, including residential, industrial and undisturbed (forests and parks), was used. Random Forest (RF), Extreme Gradient Boosting (XGboost), Cubist and k-Nearest Neighbor (kNN) ML techniques were employed to model and map the Hg concentrations. We used remote sensing data (RSD) and topographic attributes as explanatory variables. ML models were calibrated and validated using the leave-one-out cross-validation approach. The Hg content varied from 0.005 to 0.58 mg/kg and was characterized by very high variability. According to the MAE and RMSE metrics, the RF method resulted in the most accurate spatial prediction for the Hg content (0.029 and 0.065 mg/kg, respectively), while the XGBoost approach showed the lowest prediction efficiency (0.032 and 0.073 mg/kg, respectively). The results showed that the slope map, spectral index MSI and Sentinel-2A band B11 were the key variables in explaining the variability of Hg content. We found that higher uncertainty values of soil Hg were found in croplands, urban residential and industrial areas, which supports the view that spatial modelling of HM in urban landscapes is challenging. The present study provides insights into the potential of digital soil mapping techniques in combination with RSD and terrain variables for identifying areas at risk of Hg contamination in urban areas, which can inform land-use planning and management strategies to protect human health and the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call