Abstract

Methylmercury (MeHg) is a toxicant that mainly originates from in situ microbial methylation of inorganic mercury (Hg) in the environment and poses a severe health risk to the public. However, the characteristics of the Hg-methylating microbial community and its relationship with MeHg production in various environments remain to be understood. In the present study, Hg-methylating microbial communities and genes (hgcAB cluster) in the sediments of the Pearl River (PR), Pearl River Estuary (PRE) and South China Sea (SCS) were investigated at a large spatial scale using high-throughput sequencing-based approaches. The results showed that sulfur-reducing bacteria (SRB) and iron-reducing bacteria (IRB) were consistently the dominant microbial strains responsible for the methylation of inorganic Hg in all three regions investigated. The abundance and diversity of Hg-methylating communities and genes were both found to be higher in the PR sediments compared to that in the PRE and SCS sediments, and in good agreement with the spatial distribution of MeHg. Furthermore, a significant correlation was observed between the MeHg concentration and the abundance of both hgcA and hgcB genes in the sediments of the PR, PRE and SCS regions. Overall, the present study suggested that there was the presence of a close link between MeHg and Hg-methylating communities or genes in the ambient aquatic environment, which could be used to reflect the potential of in situ MeHg production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.