Abstract

Mercury is in some sense an enigmatic element. The element and some of its compounds are a natural part of the biogeochemical cycle; while many of these can be deadly poisons at higher levels, environmental levels in the absence of anthropogenic contributions would generally be below the threshold for concern. However, mercury pollution, particularly from burning fossil fuels such as coal, is providing dramatic and increasing emissions into the environment. Because of this, the environmental chemistry and toxicology of mercury are of growing importance, with the fate of mercury being vitally dependent upon its speciation. X-ray absorption spectroscopy (XAS) provides a powerful tool for in situ chemical speciation, but is severely limited by poor spectroscopic energy resolution. Here, we provide a systematic examination of mercury Lα1 high energy resolution fluorescence detected XAS (HERFD-XAS) as an approach for chemical speciation of mercury, in quantitative comparison with conventional Hg LIII-edge XAS. We show that, unlike some lighter elements, chemical shifts in the Lα1 X-ray fluorescence energy can be safely neglected, so that mercury Lα1 HERFD-XAS can be treated simply as a high-resolution version of conventional XAS. We present spectra of a range of mercury compounds that may be relevant to the environmental and life science research and show that density functional theory can produce adequate simulations of the spectra. We discuss strengths and limitations of the method and quantitatively demonstrate improvements both in speciation for complex mixtures and in background rejection for low concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.