Abstract

Inhibition of electron transport activities in the spheroplasts ofSynechococcus 6301 by HgCl2 is dependent on the concentration of mercury ions. The inhibition of whole chain electron transport activity occurs at low concentration of Hg2+ (6 ΜM@#@). This inhibition occurs mostly due to interaction of Hg2+ on plastocyanin. At an elevated concentration (24 ΜM@#@), mercury induces inhibition chiefly in photosystem II catalyzed electron transport. At this concentration it also alters both the absorption and emission characteristics of the phycocyanin. The photosystem I catalyzed electron transport was inhibited by 50% only at high concentrations (36 ΜM@#@) of HgCl2. However, electron transport catalyzed by photosystems I and II from reduced duroquinone to methylviologen which involves intersystem electron transport is extremely sensitive to mercury (low concentration 6–9 ΜM) like that of whole chain assay indicating that the observed inhibition in whole chain electron transport at low concentrations is mostly contributed by the damage involving other intersystem electron transport carrier(s) like plastocyanin. Thus mercury ions depending on the concentration affects the electron transport at multiple sites in the spheroplasts ofSynechococcus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call