Abstract

A unique and serious case of mercury pollution has occurred in the River Nura and its floodplain in Central Kazakhstan, where mercury-rich wastewater from an acetaldehyde plant was discharged largely without treatment for several decades. In the river, the mercury became associated with millions of tonnes of power station fly ash, forming a new type of deposit known as ‘technogenic silt’. During spring floods these highly contaminated silts are transported downstream and are dispersed over the floodplain, leading to widespread contamination of the land. A detailed survey of the floodplain was carried out to investigate the extent of pollution and to assess the need for remediation. Total mercury concentrations in the topsoils of the floodplain ranged from near background levels to over 100 mg/kg. Mercury concentrations in river bank deposits were found to range from a mean of 73.3 mg/kg Hg in the most contaminated section of the river to a mean of 13.4 mg/kg Hg at a distance of 70 km downstream. Concentrations were lower than corresponding concentrations in the riverbed within the first 25 km from the source of the pollution, but thereafter they were significantly higher. The results show that over the past 30–40 years a large proportion of the contaminated sediments from the river was deposited on the 70 km of banks and in the floodplain below the pollution source. Topsoils of the floodplain and silt deposits located on or close to the river banks contain an estimated 53 t and 65 t of mercury respectively, with an additional 62 t in a small natural swamp which was formerly used as a waste disposal area. The contamination is serious but relatively localized, with >70% of the total amount of mercury in topsoils and >90% of mercury in river bank deposits located within 25 km from the source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call