Abstract

Redox conditions and organic matter control marine methylmercury (MeHg) production. The Black Sea is the world's largest and deepest anoxic basin and is thus ideal to study Hg species along the extended redox gradient. Here we present new dissolved Hg and MeHg data from the 2013 GEOTRACES MEDBlack cruise (GN04_leg2) that we integrated into a numerical 1‐D model, to track the fate and dynamics of Hg and MeHg. Contrary to a previous study, our new data show highest MeHg concentrations in the permanently anoxic waters. Observed MeHg/Hg percentage (range 9–57%) in the anoxic waters is comparable to other subsurface maxima in oxic open‐ocean waters. With the modeling we tested for various Hg methylation and demethylation scenarios along the redox gradient. The results show that Hg methylation must occur in the anoxic waters. The model was then used to simulate the time evolution (1850–2050) of Hg species in the Black Sea. Our findings quantify (1) inputs and outputs of HgT (~31 and ~28 kmol yr−1) and MeHgT (~5 and ~4 kmol yr−1) to the basin, (2) the extent of net demethylation occurring in oxic (~1 kmol yr−1) and suboxic water (~6 kmol yr−1), (3) and the net Hg methylation in the anoxic waters of the Black Sea (~11 kmol yr−1). The model was also used to estimate the amount of anthropogenic Hg (85–93%) in the Black Sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.