Abstract

Mixed ligand mercury(II) complexes of 2-meracpto-5-methyl-1,3,4-thiazdiazole (HmtzS) and phosphines or diamines having the general formulae [Hg(mtsZ)2(diphos)] {diphos = 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppe), 1,1′-bis(diphenylphosphino)ferrocene (dppf)}, [Hg(mtsZ)2(PPh3)2] and [Hg(mtsZ)2(diamine)] {diamine = bipyridyl (Bipy) or 1,10-phenthroline (Phen), were successfully synthesized by simple mixing method. The complexes were characterized by elemental analysis, molar conductivity, IR and NMR (1H, 13C and 31P) spectroscopic methods. The mtzS− ligand was coordinated through the sulfur atom of thiol group, whereas the diphosphine or diamine ligands bonded as bidentate chelating ligand to afford tetrahedral environment around the Hg(II) ions. Moreover, the complex [Hg(mtsZ)2] was used in order to study its ability to store hydrogen. The results of hydrogen isotherm at different temperatures prove that [Hg(mtsZ)2] was able to store 0.8 wt% at a pressure of 80 bar 77 K. Furthermore, the kinetic study of hydrogen storage was studied and the kinetic study was carried out using the Langmuir. Moreover, the adsorption kinetic results revealed that hydrogen storage in [Hg(mtsZ)2] follow the pseudo-second-order model with coefficient regression equal to 0.99.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call