Abstract

More and more coal-fired power plants equipped with seawater flue gas desulfurization systems have been built in coastal areas. They release large amount of mercury (Hg)-containing waste seawater into the adjacent seas. However, very limited impact studies have been carried out. Our research targeted the distribution of Hg in the seawater, sediment, biota, and atmosphere, and its environmental transportation. Seawater samples were collected from five sites: 1, sea areas adjacent to the power plant; 2, near discharge outlets; 3, the aeration pool of the power plant; and 4 and 5, two reference sites. The total gaseous Hg was determined in situ with a Tekran 2537B. Analyses of total Hg (TM) followed the USEPA methods. In most part of the study area, TM concentrations were close to the reference values and Hg transfer from the seawater into the sediment and biota was not obvious. However, in the aeration pool and near the waste discharge outlets, atmospheric and surface seawater concentrations of TM were much higher, compared with those at a reference site. The concentration ranges of total gaseous Hg and TM in seawater were 3.83-8.60 ng/m(3) and 79.0-198 ng/L near the discharge outlets, 7.23-13.5 ng/m(3) and 186-616 ng/L in the aeration pool, and 2.98-4.06 ng/m(3) and 0.47-1.87 ng/L at a reference point. This study suggested that the Hg in the flue gas desulfurization waste seawater was not only transported and diluted with sea currents, but also could possibly be transferred into the atmosphere from the aeration pool and from the discharge outlets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.