Abstract

A series of fluorescent sensor molecules based on a phosphane sulfide derivative that is soluble in an organoaqueous solvent were designed and synthesized. The structure of the fluorophore has been optimized in order to have the best compromise in terms of solubility and photophysical properties. The obtained properties are in full agreement with quantum chemical calculations. A fluorescent molecular sensor containing one polyoxoethylene group has been synthesized and an efficient quenching upon mercury complexation has been observed. Finally, this sensing molecule has been introduced in a microfluidic chip in which fluorescence detection has been integrated. An efficient fluorescence response was observed upon mercury addition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.