Abstract
The fate of mercury in decomposing leaf litter and soil is key to understanding the biogeochemistry of mercury in forested ecosystems. We quantified mercury dynamics in decomposing leaf litter and measured fluxes and pools of mercury in litterfall, throughfall, and soil in two forest types of the Adirondack region, New York, USA. The mean content of total mercury in leaf litter increased to 134% of its original mass during two years of decomposition. The accumulation pattern was seasonal, with significant increases in mercury mass during the growing season (+4.9% per month). Litterfall dominated mercury fluxes into the soil in the deciduous forest, whereas throughfall dominated fluxes into the coniferous forest. The increase in mercury mass in decomposing deciduous litter during the growing season was greater than could be accounted for by throughfall inputs during the growing season (P < 0.05), suggesting translocation of mercury from the soil to the decomposing deciduous litter. This internal recycling mechanism concentrates mercury in the organic horizons and retards transport through the soil, thereby increasing the residence time of mercury in the forest floor. A mass balance assessment suggests that the ultimate fate of mercury in the landscape depends upon forest type and associated differences in the delivery and incorporation of mercury into the soil. Our results show that incorporation of mercury into decaying leaf litter increases its residence time in the landscape and may further delay the recovery of surface waters, fish, and associated biota following control of mercury emissions to the atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.