Abstract

Artisanal and small-scale gold mining (ASGM) in Madre de Dios, Peru, continues to expand rapidly, raising concerns about increases in loading of mercury (Hg) to the environment. We measured physicochemical parameters in water and sampled and analyzed sediments and fish from multiple sites along one ASGM-impacted river and two unimpacted rivers in the region to examine whether Hg concentrations were elevated and possibly related to ASGM activity. We also analyzed the 308 fish samples, representing 36 species, for stable isotopes (δ15N and δ13C) to estimate their trophic position. Trophic position was positively correlated with the log-transformed Hg concentrations in fish among all sites. There was a lack of relationship between Hg concentrations in fish and either Hg concentrations in sediments or ASGM activity among sites, suggesting that fish Hg concentrations alone is not an ideal bioindicator of site-specific Hg contamination in the region. Fish Hg concentrations were not elevated in the ASGM-impacted river relative to the other two rivers; however, sediment Hg concentrations were highest in the ASGM-impacted river. Degraded habitat conditions and commensurate shifts in fish species and ecological processes may influence Hg bioaccumulation in the ASGM-impacted river. More research is needed on food web dynamics in the region to elucidate any effects caused by ASGM, especially through feeding relationships and food sources.

Highlights

  • Mercury (Hg) is a global pollutant that can affect both human and ecosystem health

  • We evaluated Hgsed and Hg concentrations in fish (Hgfish) in a river where mining activities were occurring upstream and compared these values to those from two proximate rivers without mining to characterize the level and extent of Hg contamination associated with ASGM

  • Hgfish results from this study are similar to results reported by others in the Amazon

Read more

Summary

Introduction

Mercury (Hg) is a global pollutant that can affect both human and ecosystem health. It is a naturally-occurring element, but concentrations have been enriched due to mobilization by humans for thousands of years into the atmosphere, as well as aquatic and terrestrial ecosystems [1,2]. Public Health 2018, 15, 1584; doi:10.3390/ijerph15081584 www.mdpi.com/journal/ijerph

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.