Abstract

The Huludao zinc plant in Liaoning province, northeast China was the largest in Asia, and its smelting activities had seriously contaminated soil, water and atmosphere in the surrounding area. For the first time, we investigated the total mercury (THg) content in maize, soybean, broomcorn, 22 vegetables, and the soil around their roots from eight sampling plots near the Huludao zinc plant. THg contents of the seeds of maize, soybean, and broomcorn are 0.008, 0.006, and 0.057 mg kg(-1), respectively, with the broomcorn being the highest, exceeding the maximum level of contaminant in food (GB2762-2005) by 4.7 times. The edible parts of vegetables are also contaminated with a range of mercury contents of 0.001-0.147 mg kg(-1) (dry weight). THg contents in plant tissue decrease in the order of leaves > root > stalk > grain. Using correlation analysis, we show that mercury in the roots of these plants is mainly derived from soil, and the uptake of gaseous mercury is the predominant path by which the mercury accumulated in the foliage. The average and maximum mercury daily intake (DI) of adult around the Huludao zinc plant via consuming vegetables are 0.015 and 0.051 microg/kg/d, respectively, and those of children are 0.02 and 0.07 microg/kg/d, respectively. The average and maximum weekly intakes of total mercury for adult are 2.1 and 7.1%, respectively, of the provisional tolerable weekly intake (PTWI), and 2.8 and 9.7%, respectively, of the PTWI for children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.