Abstract

Assessing mercury (Hg) biomagnification requires the description of prey-predator relationships, for each species and ecosystem, usually based on carbon and nitrogen isotope analyses. Here, we analyzed two seabirds from the Humboldt Current ecosystem, the Guanay cormorant (Phalacrocorax bougainvillii) and the Peruvian booby (Sula variegata), as well as their main prey, the Peruvian anchovy (Engraulis ringens). We reported Hg concentrations, Hg biomagnification (BMF) and isotopic discrimination factors (Δ13C and Δ15N) in seabird whole blood. BMFs and Δ13C in our study (on wild birds where diet was not controlled) were similar to other piscivorous seabirds previously studied in captive settings, but Δ15N were lower than most captive experiments. We observed lower Hg concentrations in Humboldt seabirds compared to other oligotrophic ecosystems, possibly due to Hg biodilution in the high biomass of the first trophic levels. This work calls for a better characterization of Hg trophic dynamics in productive upwelling ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call