Abstract

In this study, from the perspectives of structural and compositional variations of soil-dissolved organic matter (DOM), we explored the effects of agricultural DOM inputs on methylmercury (MeHg) accumulation in the soil and mercury (Hg) bioaccumulation in rice grains. Pot experiments with the addition of DOMs from maize straw (MaS), rape straw (RaS), rice straw (RiS), composted rice straw (CRiS), cow dung (CD), and composted cow dung (CCD) were then conducted. Results showed that, relative to the control, the DOM amendment from each agricultural source elevated MeHg concentrations in the soil, with an increase of 18-227%, but only parts of DOMs elevated total dissolved Hg (DHg) and MeHg (DMeHg) concentrations in pore water. Among all DOM species, RiS, CRiS, and CCD significantly increased total Hg (THg) and MeHg contents in rice grains by 34-64% and 32-118%, respectively. Compared with RiS, THg and MeHg contents in rice grains in the CRiS treatment decreased slightly, which was consistent with the distributions of DHg and DMeHg concentrations in pore water and the aromaticity variation of soil DOM. In contrast, the CCD input significantly enhanced the enrichment of THg and MeHg in rice grains relative to CD because it significantly reduced the humification of soil DOM at all rice-growing stages while increasing the low-molecular-weight fractions in soil DOM. The THg and MeHg contents in the rice grains were significantly lower treated by RaS than those by MaS and RiS, which may be related to the higher sulfur-containing compounds such as sulfate and cysteine in rape straw or its DOM solution. Overall, DOM amendment from different agricultural sources resulted in significantly discriminative effects on the MeHg accumulation in soil and Hg enrichment in rice in the Hg-contaminated paddy field by shaping soil DOM properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call