Abstract

We studied the distribution of different mercury species in two newly created reservoirs (Hongjiadu [HJD] and Suofengying [SFY] Reservoir) within the Wujiang River, Guizhou Province, China. These reservoirs were sampled four times between January, 2007, and November, 2007. Water, soil, and fish tissue samples were collected and analyzed for organic (methylmercury) and total Hg. Dissolved organic carbon (DOC) content in water was measured as well. In both reservoirs, the DOC concentration was low (range 0.5-4.9 mg/L). Organic matter content in soil collected near the bank of both reservoirs was also low (range 0.4-6.9%). The total MeHg level did not increase significantly with depth in water column, nor did it exhibit a pronounced spatial pattern moving from upstream to the dam. The total MeHg level did not increase significantly with depth in water column, nor did it exhibit a pronounced spatial pattern moving from upstream to the dam. The total Hg content in fish tissue was on average 0.044 mg/kg wet weight, which is a very low content in an international comparison. It is suggested that the studied reservoirs were not active sites of net Hg methylating. Low levels of organic matter (OM) may constrict the evolution of the bulk Hg methylation process occurring in flooded soil. Therefore, we hypothesize that newly constructed reservoirs in the karstic region of Southwest China appear to be much less beset by the problems of MeHg pollution that have been reported for corresponding reservoirs in North America and Europe. However, further research is required to verify this finding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.