Abstract
On April 3, 2003, a project kickoff meeting was held at the U.S. Department of Energy National Energy Technology Laboratory. As a result of this meeting and follow-up communications, a final work plan was developed, and a schedule of laboratory tasks was developed. Work for the remainder of the second quarter of this project focused on sample collection, initiating laboratory tests, and performing literature searchers. The final project partner, the North Dakota Industrial Commission, signed its contract for participation in the project. This effort will focus on the evaluation of coal combustion by-products (CCBs) for their potential to release mercury and other air toxic elements under different controlled laboratory conditions and will investigate the release of these same air toxic elements in select disposal and utilization field settings to understand the impact of various emission control technologies. The information collected will be evaluated and interpreted together with past Energy & Environmental Research Center (EERC) data and similar data from other studies. Results will be used to determine if mercury release from CCBs, both as currently produced and produced with mercury and other emission controls in place, is a realistic environmental issue. The proposed work will evaluate the impact of mercury and other air toxics on the disposal and/or utilization of CCBs. The project will provide data on the environmental acceptability of CCBs expected to be produced in systems with emission controls for typical disposal and utilization scenarios. The project will develop baseline information on release mechanisms of select elements in both conventional CCBs and modified or experimental CCBs. The modified or experimental CCBs will be selected to represent CCBs from systems that have improved emission controls. Controlling these emissions has high potential to change the chemical characteristics and environmental performance of CCBs. Development of reliable methods to determine the release of mercury from CCBs will provide a means of evaluating the environmental risk associated with CCB management practices. Using appropriate methods to develop a data set of currently produced CCBs and CCBs produced under experimental/simulated conditions will provide a baseline for the CCB industry to understand the impact of various emission control technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.