Abstract

Abstract Mercurial signatures are a useful building block for privacy-preserving schemes, such as anonymous credentials, delegatable anonymous credentials, and related applications. They allow a signature σ on a message m under a public key pk to be transformed into a signature σ′ on an equivalent message m′ under an equivalent public key pk′ for an appropriate notion of equivalence. For example, pk and pk′ may be unlinkable pseudonyms of the same user, and m and m′ may be unlinkable pseudonyms of a user to whom some capability is delegated. The only previously known construction of mercurial signatures suffers a severe limitation: in order to sign messages of length ℓ, the signer’s public key must also be of length ℓ. In this paper, we eliminate this restriction and provide an interactive signing protocol that admits messages of any length. We prove our scheme existentially unforgeable under chosen open message attacks (EUF-CoMA) under a variant of the asymmetric bilinear decisional Diffie-Hellman assumption (ABDDH).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.