Abstract

Variovorax paradoxus B4 was isolated due to its ability to degrade the organic thiol compound mercaptosuccinate, which could be a promising precursor for novel polythioesters. The analysis of the proteome of this Gram-negative bacterium revealed several proteins with significantly increased expression during growth of cells with mercaptosuccinate as carbon source when compared to cells grown with gluconate or succinate. Among those, a large number of proteins involved in amino acid metabolism were identified, e.g., adenosylhomocysteinase and glutamate-ammonia ligase. Additionally, detection of superoxide dismutase strengthened the assumption of enhanced stress levels in mercaptosuccinate-grown cells. Several isoforms of a rhodanese domain-containing protein exhibited particularly increased expression during growth with mercaptosuccinate in comparison to gluconate (factor 14.2, stationary phase) or to succinate (factor 15.4, stationary phase). Besides this, augmented expression of the hypothetical protein VAPA_1c41240 raised attention. VAPA_1c41240 exhibited up to 13.3-fold (mercaptosuccinate vs gluconate) or 9.5-fold (mercaptosuccinate vs succinate) increased expression levels, and in silico searches revealed that this protein might be a thiol dioxygenase. Based on these results, a novel degradation pathway is proposed for mercaptosuccinate. The newly identified putative mercaptosuccinate dioxygenase could convert mercaptosuccinate to sulfinosuccinate by the introduction of two molecules of oxygen. Subsequently, sulfinosuccinate would be cleaved into succinate and sulfite either by a yet unknown enzyme, by spontaneous hydrolysis, or by the putative mercaptosuccinate dioxygenase itself. Succinate could then enter the central metabolism, while detoxification of sulfite could be achieved by the previously identified putative molybdopterin oxidoreductase. Biochemical studies will be done in the future to confirm this pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.