Abstract

CSF-1, a key regulator of mononuclear phagocyte production, is highly expressed in the skeleton by osteoblasts/osteocytes and in a number of nonskeletal tissues such as uterus, kidney and brain. The spontaneous mutant op/op mouse has been the conventional model of CSF-1 deficiency and exhibits a pleiotropic phenotype characterized by osteopetrosis, and defects in hematopoiesis, fertility and neural function. Studies to further delineate the biologic effect of CSF-1 within various tissues have been hampered by the lack of suitable models. To address this issue, we generated CSF-1 floxed/floxed mice and demonstrate that Cre-mediated recombination using Meox2Cre, a Cre line expressed in epiblast during early embryogenesis, results in mice with ubiquitous CSF-1 deficiency (CSF-1KO). Homozygous CSF-1KO mice lacked CSF-1 in all tissues and displayed, in part, a similar phenotype to op/op mice that included: failure of tooth eruption, osteopetrosis, reduced macrophage densities in reproductive and other organs and altered hematopoiesis with decreased marrow cellularity, circulating monocytes and B cell lymphopoiesis. In contrast to op/op mice, CSF-1KO mice showed elevated circulating and splenic T cells. A striking feature in CSF-1KO mice was defective osteocyte maturation, bone mineralization and osteocyte-lacunar system that was associated with reduced dentin matrix protein 1 (DMP1) expression in osteocytes. CSF-1KO mice also showed a dramatic reduction in osteomacs along the endosteal surface that may have contributed to the hematopoietic and cortical bone defects. Thus, our findings show that ubiquitous CSF-1 gene deletion using a Cre-based system recapitulates the expected osteopetrotic phenotype. Moreover, results point to a novel link between CSF-1 and osteocyte survival/function that is essential for maintaining bone mass and strength during skeletal development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.