Abstract
Recent advances in OCR show that end-to-end (E2E) training pipelines including detection and identification can achieve the best results. However, many existing methods usually focus on case insensitive English characters. In this paper, we apply an E2E approach, the multiplex multilingual mask TextSpotter, which performs script recognition at the word level and uses different recognition headers to process different scripts while maintaining uniform loss, thus optimizing script recognition and multiple recognition headers simultaneously. Experiments show that this method is superior to the single-head model with similar number of parameters in end-to-end identification tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.