Abstract
One of the most significant limitations of surgical robots has been their inability to allow multiple surgeons and surgeons-in-training to engage in collaborative control of robotic surgical instruments. We report the initial experience with a novel two-headed da Vinci surgical robot that has two collaborative modes: the "swap" mode allows two surgeons to simultaneously operate and actively swap control of the robot's four arms, and the "nudge" mode allows them to share control of two of the robot's arms. The utility of the mentoring console operating in its two collaborative modes was evaluated through a combination of dry laboratory exercises and animal laboratory surgery. The results from surgeon-resident collaborative performance of complex three-handed surgical tasks were compared to results from single-surgeon and single-resident performance. Statistical significance was determined using Student's t-test. Collaborative surgeon-resident swap control reduced the time to completion of complex three-handed surgical tasks by 25% compared to single-surgeon operation of a four-armed da Vinci (P < 0.01) and by 34% compared to single-resident operation (P < 0.001). While swap mode was found to be most helpful during parts of surgical procedures that require multiple hands (such as isolation and division of vessels), nudge mode was particularly useful for guiding a resident's hands during crucially precise steps of an operation (such as proper placement of stitches). The da Vinci mentoring console greatly facilitates surgeon collaboration during robotic surgery and improves the performance of complex surgical tasks. The mentoring console has the potential to improve resident participation in surgical robotics cases, enhance resident education in surgical training programs engaged in surgical robotics, and improve patient safety during robotic surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Laparoendoscopic & Advanced Surgical Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.