Abstract
Electroencephalogram (EEG) represents an effective, non-invasive technology to study mental workload. However, volume conduction, a common EEG artifact, influences functional connectivity analysis of EEG data. EEG coherence has been used traditionally to investigate functional connectivity between brain areas associated with mental workload, while weighted Phase Lag Index (wPLI) is a measure that improves on coherence by reducing susceptibility to volume conduction, a common EEG artifact. The goal of this study was to compare two methods of functional connectivity analysis, wPLI and coherence, in the context of mental workload evaluation. The study involved model development for mental workload domains and comparing their performance using coherence-based features, wPLI-based features, and a combination of both. Generalized linear mixed-effects model (GLMM) with the least absolute shrinkage and selection operator (LASSO) feature selection method was used for model development. Results indicated that the model developed using a combination of both feature types demonstrated improved predictive performance across all mental workload domains, compared to models that used each feature type individually. The R2 values were 0.82 for perceived task complexity, 0.71 for distraction, 0.91 for mental demand, 0.85 for physical demand, 0.74 for situational stress, and 0.74 for temporal demand. Furthermore, task complexity and functional connectivity patterns in different brain areas were identified as significant contributors to perceived mental workload (p-value<0.05). Findings showed the potential of using EEG data for mental workload evaluation which suggests that combination of coherence and wPLI can improve the accuracy of mental workload domains prediction. Future research should aim to validate these results on larger, diverse datasets to confirm their generalizability and refine the predictive models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.