Abstract

It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue –17 ± 15%, control –15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue –6 ± 9%, control –6 ± 7%, p = 0.013) and resting twitch (mental fatigue –30 ± 14%, control –32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort.

Highlights

  • Self-regulation is the modulation of thought, affect, behavior, or attention via deliberate or automated use of cognitive control mechanisms (Karoly, 1993) such as response inhibition (Ridderinkhof et al, 2004)

  • As perception of effort can be increased by muscle fatigue (Marcora et al, 2008; de Morree et al, 2012; de Morree and Marcora, 2013), we examined both central fatigue and peripheral fatigue before and after the incongruent Stroop task

  • This study was the first to test the hypothesis that mental fatigue and central fatigue induced by whole-body exercise are causally related

Read more

Summary

Introduction

Self-regulation is the modulation of thought, affect, behavior, or attention via deliberate or automated use of cognitive control mechanisms (Karoly, 1993) such as response inhibition (Ridderinkhof et al, 2004). In the context of whole-body exercise physiology, we and others found that prolonged (30–90 min) engagement with CTs requiring self-regulation impairs endurance performance during subsequent running or cycling exercise (Marcora et al, 2009; MacMahon et al, 2014; Pageaux et al, 2014) In this context, the prominent explanation for impaired endurance performance is that prolonged engagement with CTs requiring self-regulation induces a subjective state of mental fatigue characterized by feelings of tiredness/lack of energy at rest and/or higher-than-normal perception of effort during subsequent whole-body endurance exercise. The prominent explanation for impaired endurance performance is that prolonged engagement with CTs requiring self-regulation induces a subjective state of mental fatigue characterized by feelings of tiredness/lack of energy at rest and/or higher-than-normal perception of effort during subsequent whole-body endurance exercise In these studies, no negative effects of mental fatigue were found on the physiological systems (cardiorespiratory and metabolic) supporting whole-body endurance exercise. This effort-based decision is taken when they

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call