Abstract

Adaptive physiological stress regulation is rarely studied in mild cognitive impairment (MCI). Here we targeted mental fatigability (MF) as a determinant of altered high frequency heart rate variability (HF-HRV) reactivity in individuals with MCI, and examined frontobasal ganglia circuitry as a neural basis supporting the link between MF and HF-HRV reactivity. We measured mental fatigability and HF-HRV during a 60-minute cognitive stress protocol in 19 individuals with MCI. HF-HRV responses were modeled using a quadratic equation. Resting state functional connectivity of intra- and inter-network frontobasal ganglia circuitry was assessed using blood-oxygen-level-dependent magnetic resonance imaging among seven of the participants. Lower MF was associated with faster and greater rebound in U-shape HF-HRV reactivity, which linked to a stronger connectivity between right middle frontal gyrus and left putamen. Results suggest that MF may contribute to abnormal physiological stress regulation in MCI, and fronto basal ganglia circuitry may support the link.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.