Abstract

Meniscal degeneration is defined by semi-quantitative assessment of multiple histological findings and has been implicated in biomechanical dysfunction, yet little is known about its relationship with biological properties. This paper aimed to quantitatively evaluate degenerative findings in human meniscus to examine their relationship with gene expression and biomechanical properties, and to extract histological findings that reflect biological properties like gene expression and cytokine secretion. This study included lateral menisci of 29 patients who underwent total knee arthroplasty. The menisci were divided into six samples. For each sample, Pauli's histological evaluation and corresponding quantitative assessment (surface roughness, DNA content, collagen orientation, and GAG content) were performed, with surface roughness showing the highest correlation with the histological evaluation in a single correlation analysis (r = 0.66, p < 0.0001) and multivariate analysis (p < 0.0001). Furthermore, surface roughness was associated with gene expression related to meniscal degeneration and with tangent modulus which decreases with increasing degeneration (r = − 0.49, p = 0.0002). When meniscal tissue was classified by surface integrity, inflammatory cytokine secretion tended to be higher in severe degenerated menisci. These results suggest that the evaluation of meniscal surface texture could predict the degree of degeneration and inflammatory cytokine secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.