Abstract
Morphology control is the key to engineering highly efficient solution-processed solar cells. Focusing on the most promising application-oriented photovoltaic all-polymer solar cells (all-PSCs), herein a facile and effective meniscus-assisted-coating (MAC) strategy is reported for preparing high-quality blend films with enhanced crystallinity and an interpenetrating nanofiber network morphology. The all-PSCs based on MAC exhibit excellent optoelectronic properties with efficiencies exceeding 15%, which is the best performance of solution-printing-based all-PSCs, as well as better stability. The crystallization kinetics of the polymer blend film is investigated by in situ UV-vis absorption spectroscopy, and the result explains the linear relationship between the meniscus advance speed and the crystallinity (crystallization rate) of the polymer. To verify the compatibility and universality of this strategy, the MAC strategy is applied to the other three binary systems. By precisely controlling the meniscus advancing speed, 1 cm2 all-PSC devices whose efficiencies exceed 12% are fabricated. Such progress demonstrates that the application of the MAC strategy is a promising approach for the fabrication of high-efficiency all-PSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.