Abstract

The knee menisci are critical to the long-term health of the knee joint. Because of the high incidence of injury and degeneration, replacing damaged or lost meniscal tissue is extremely clinically relevant. The multiscale architecture of the meniscus results in unique biomechanical properties. Nanofibrous scaffolds are extremely attractive to replicate the biochemical composition and ultrastructural features in engineered meniscus tissue. We review recent advances in electrospinning to generate nanofibrous scaffolds and the current state-of-the-art of electrospun materials for meniscal regeneration. We discuss the importance of cellular function for meniscal tissue engineering and the application of cells derived from multiple sources. We compare experimental models necessary for proof of concept and to support translation. Finally, we discuss future directions and potential for technological innovations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call