Abstract
Background and purposeKinetic parameters of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are considered to be influenced by microvessel environment. This study was performed to explore the extent of this association for meningiomas. Materials and methodsDCE-MRI kinetic parameters (contrast agent transfer constants Ktrans and kep, volume fractions vp and ve) were determined in pre-operative 3T MRI of meningioma patients for later biopsy sites (19 patients; 15 WHO Io, no previous radiation, and 4 WHO IIIo pre-radiated recurrent tumors). Sixty-three navigated biopsies were consecutively retrieved. Biopsies were immunohistochemically investigated with endothelial marker CD34 and VEGF antibodies, stratified in a total of 4383 analysis units and computationally assessed for VEGF expression and vascular parameters (vessel density, vessel quantity, vascular fraction within tissue [vascular area ratio], vessel wall thickness). Derivability of kinetic parameters from VEGF expression or microvascularization was determined by mixed linear regression analysis. Tissue kinetic and microvascular parameters were tested for their capacity to identify the radiation status in a subanalysis. ResultsKinetic parameters were neither significantly related to the corresponding microvascular parameters nor to tissue VEGF expression. There was no significant association between microvessel density and its presumed correlate vp (P=0.07). The subgroup analysis of high-grade radiated meningiomas showed a significantly reduced microvascular density (AUC 0.91; P<0.0001) and smaller total vascular fraction (AUC 0.73; P=0.01). ConclusionsIn meningioma, DCE-MRI kinetic parameters neither allow for a reliable prediction of tumor microvascularization, nor for a prediction of VEGF expression. Kinetic parameters seem to be determined from different independent factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.