Abstract

Parthenogenesis is the capacity of organisms to develop embryos from unfertilized eggs. When parthenogenesis is coupled with unreduced gamete formation (apomeiosis), genetically maternal progeny result. Genetic elucidation of this form of reproduction in plants, apomixis, has important agronomic implications. However, genetic characterization of apomeiosis and parthenogenesis has been problematic in part because the traits usually co-occur and are restricted to polyploids. In this work, the inheritance of parthenogenetic embryo development, by itself, was studied at the diploid level. Progeny resulting from a cross between a diploid (2n = 18), heterozygous, parthenogenetic pollen donor, and a diploid, wildtype, sexual seed parent were evaluated. Paternity was tested with conserved orthologous sequence (COS) markers, reproductive development of F1s was evaluated with microscopy of cleared ovules, and an amplified fragment length polymorphism (AFLP) marker (Eagc × Macg.615) co-segregating with parthenogenesis was characterized at the sequence level. Of 102 diploid biparental progeny, 47 exhibited parthenogenetic embryo and endosperm development, and 55 lacked development of the egg and central cell. This result is consistent with Mendelian inheritance for a single locus (P = 0.43). Isolation and sequencing of the AFLP marker indicates that it is likely a portion of a Ty-Gypsy retrotransposon. Attempts to develop a sequence-characterized amplified region marker from the AFLP were unsuccessful. This work shows that parthenogenesis can be transmitted simply at the diploid level. This advance is key in the development of a tractable system in Erigeron aimed at the identification of the parthenogenesis locus using genetic mapping strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call