Abstract

Pulmonary arterial hypertension (PAH) exhibits phenotypic heterogeneity and variable response to therapy. The metabolome has been implicated in the pathogenesis of PAH, but previous works have lacked power to implicate specific metabolites. Mendelian randomization (MR) is a method for causal inference between exposures and outcomes. Using genome-wide association study summary statistics, we implemented MR analysis to test for potential causal relationships between serum concentration of 575 metabolites and PAH. Five metabolites were causally associated with the risk of PAH after multiple testing correction. Next, we measured serum concentration of candidate metabolites in an independent clinical cohort of 449 patients with PAH to check whether metabolite concentrations are correlated with markers of disease severity. Of the 5 candidates nominated by our MR work, serine was negatively associated and homostachydrine was positively associated with clinical severity of PAH via direct measurement in this independent clinical cohort. Finally we used conditional and orthogonal approaches to explore the biology underlying our lead metabolites. Rare variant burden testing was carried out using whole exome sequencing data from 578 PAH cases and 361 675 controls. Multivariable MR is an extension of MR that uses a single set of instrumental single-nucleotide polymorphisms to measure multiple exposures; multivariable MR is used to determine interdependence between the effects of different exposures on a single outcome. Rare variant analysis demonstrated that loss-of-function mutations within activating transcription factor 4, a transcription factor responsible for upregulation of serine synthesis under conditions of serine starvation, are associated with higher risk for PAH. Homostachydrine is a xenobiotic metabolite that is structurally related to l-proline betaine, which has previously been linked to modulation of inflammation and tissue remodeling in PAH. Our multivariable MR analysis suggests that the effect of l-proline betaine is actually mediated indirectly via homostachydrine. Our data present a method for study of the metabolome in the context of PAH, and suggests several candidates for further evaluation and translational research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.