Abstract

Oxidative stress has been implicated in neuronal death caused by cerebral ischemia or some neurologic disorders. Chemical hypoxia (term defining the simulation by using respiratory inhibitors) chosen as in vitro ischemic model, was induced in primary cultures of rat cerebellar granule neurons by inhibitors of mitochondrial electron transport such as rotenone or paraquat (complex I), 3-nitropropionic acid (3-NPA, complex II), antimycin A (complex III), or sodium azide (complex IV). All compounds caused neuronal death determined by trypan blue staining and MTT-test. On the other hand, neurotoxicity of rotenone and paraquat but not of 3-NPA, antimycin or azide was significantly abolished by menadione (vitamin K3, 2-methyl-1,4-naphthoquinone). This neuroprotective effect of menadione was associated with a decrease of rotenone-induced free radical production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.