Abstract
Microelectromechanical systems (MEMS) have played key roles in many important areas, for example transportation, communication, automated manufacturing, environmental monitoring, health care, defense systems, and a wide range of consumer products. MEMS are inherently small, thus offering attractive characteristics such as reduced size, weight, and power dissipation and improved speed and precision compared to their macroscopic counterparts. Integrated circuit (IC) fabrication technology has been the primary enabling technology for MEMS besides a few special etching, bonding and assembly techniques. Microfabrication provides a powerful tool for batch processing and miniaturizing electromechanical devices and systems to a dimensional scale that is not accessible by conventional machining techniques. As IC fabrication technology continues to scale toward deep submicrometer and nanometer feature sizes, a variety of nanoelectromechanical systems (NEMS) can be envisioned in the foreseeable future. Nanoscale mechanical devices and systems integrated with nanoelectronics will open a vast number of new exploratory research areas in science and engineering. NEMS will most likely serve as an enabling technology, merging engineering with the life sciences in ways that are not currently feasible with microscale tools and technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.