Abstract

This paper presents a new silicon-on-insulator-based MEMS nanopositioner that is designed for high-speed on-chip atomic force microscopy (AFM). The device features four electrostatic actuators in a 2-DOF configuration that allows bidirectional actuation of a central stage along two orthogonal axes with displacements greater than ±10μm. The x- and y-axis resonant modes of the stage are located at 1274Hz and 1286Hz, respectively. Integrated electrothermal sensors are used to control the system in closed loop, with a damping controller and an internal model controller being implemented for each axis. The performance of the closed-loop system is demonstrated by performing a 20μm×20μm contact-mode AFM scan via a Lissajous scan trajectory with a 410Hz sinusoidal reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.