Abstract

Mechanical forces play important roles in the biological function of cells and tissues. While numerous studies have probed the force response of cells and measured cell-generated forces, they have primarily focused on tensile, but not shear forces. Here, we describe the design, fabrication, and application of a silicon micromachined device that is capable of independently applying and sensing both tensile and shear forces in an epithelial cell monolayer. We integrated the device with an upright microscope to enable live cell brightfield and fluorescent imaging of cells over many hours following mechanical perturbation. Using devices of increasing stiffness and the same displacement input, we demonstrate that epithelia exhibit concomitant higher maximum resistive tensile forces and quicker force relaxation. In addition, we characterized the force response of the epithelium to cyclic shear loading. While the maximum resistive forces of epithelia under cyclic shear perturbation remained unchanged between cycles, cyclic loading led to faster relaxation of the resistive forces. The device presented here can be applied to studying the force response of other monolayer-forming cell types and is compatible with pharmacological perturbation of cell structures and functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.